POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

COURSE DESCRIPTION CARD - SYLLABUS

Course name				
Advanced Signal Processing Algorithms				
Course				
Field of study Electronics and Telecommunications		Year/Semester II/III		
				Area of study (specialization)
		general academic		
Level of study Second-cycle studies		Course offered in		
		English		
Form of study		Requirements		
full-time		compulsory		
Number of hours				
Lecture	Laboratory classes	Other (e.g. online)		
30	0			
Tutorials	Projects/seminars			
30				
Number of credit points	5			
4				
Lecturers				
Responsible for the course/lecturer: Responsible for the course/lecturer:		sible for the course/lecturer:		

Prerequisites

Knowledge from the domain of Mathematical Analysis and lecture "Digital Signal Processing": Linear Time-Invariant Systems, Fourier transform, z-transform, design of digital filters, DFT.

Course objective

Knowledge and understanding of advanced methods of signal analysis and processing: time-varying (adaptive) systems, time-frequency signal analysis.

Course-related learning outcomes

Prof. dr hab. inż. Ryszard Stasiński ryszard.stasinski@put.poznan.pl

Knowledge

- 1. Knowledge about linear prediction, predictor structures, design algorithms, and Wiener filtering.
- 2. Knowledge about structures and properties of adaptive filters (LMS, RLS, fast RLS)

3. Knowledge about construction of multirate systems, basic structures of such systems, and about time-frequency signal analysis

POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

Skills

- 1. Designing and implementing of adaptive filters
- 2. Doing time-frequency signal analysis
- 3 Designing of multi-rate signal processing systems

Social competences

Understands necessity of competent approach to solving technical problems

Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows:

Exam: Written answers to 8-10 questions covering the subject, passing threshold: 50%.

Exercises: Two colloquia, passing threshold: 50%.

Programme content

Lecture: Prediction and Wiener filtering theory: modeling of stochastic processes, Wiener-Hopf equations and algorithms for their solving, predictor structures. Adaptive filters: their relation to Wiener filters, definitions and properties of gradient and least-squares filters, basic implementations. Multirate systems: principles of changing sampling frequency of a signal, decimators and interpolators, filter banks and their properties, QMF filters and their use to implementation of wavelet transform. Time-frequency signal analysis: short-time Fourier transform (Spectrogram), Gabor transform, wavelet transform.

Exercises: modeling of stochastic processes. Parametric methods of spectrum estimation. Optimal Wiener filters in: prediction, damping/amplifying narrow-band signal in the presence of a wide-band one, interference atenuation, identification and modeling of systems, equalizers.

Teaching methods

Lecture: Multimedia presentaion plus explanation of details on a blackboard.

Exercises: Short presentation showing context of provided exercises, then solving the exercises on blackboard by students with the help of a teacher.

Bibliography

Basic

Digital Signal Processing, J.G. Proakis, D.G. Manolakis, Pearson – Prentice-Hall, ed. 4

Additional

POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

Breakdown of average student's workload

	Hours	ECTS
Total workload	100	4,0
Classes requiring direct contact with the teacher	70	3,0
Student's own work (literature studies, preparation for classes,	30	1,0
preparation for tests/exam) ¹		

¹ delete or add other activities as appropriate